
Joint Distribution

• We may be interested in probability statements of sev-
eral RVs.

• Example: Two people A and B both flip coin twice.
X: number of heads obtained by A.Y : number of
heads obtained by B. FindP (X > Y ).

• Discrete case:
Joint probability mass function:p(x, y) = P (X =
x, Y = y).

– Two coins, one fair, the other two-headed. A ran-
domly chooses one and B takes the other.

X =

{

1 A gets head
0 A gets tail

Y =

{

1 B gets head
0 B gets tail

FindP (X ≥ Y ).
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• Marginal probability mass function of X can be ob-
tained from the joint probability mass function,p(x, y):

pX(x) =
∑

y:p(x,y)>0

p(x, y) .

Similarly:

pY (y) =
∑

x:p(x,y)>0

p(x, y) .
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• Continuous case:
Joint probability density functionf(x, y):

P{(X, Y ) ∈ R} =

∫ ∫

R

f(x, y)dxdy

• Marginal pdf:

fX(x) =

∫ ∞

−∞
f(x, y)dy

fY (y) =

∫ ∞

−∞
f(x, y)dx

• Joint cumulative probability distribution function of
X andY

F (a, b) = P{X ≤ a, Y ≤ b} −∞ < a, b < ∞

• Marginal cdf:

FX(a) = F (a,∞)

FY (b) = F (∞, b)

• ExpectationE[g(X, Y )]:

=
∑

y

∑

x g(x, y)p(x, y) in the discrete case
=

∫ ∞
−∞

∫ ∞
−∞ g(x, y)f(x, y)dxdy in the continuous case
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• Based on joint distribution, we can derive

E[aX + bY ] = aE[X ] + bE[Y ]

Extension:

E[a1X1 + a2X2 + · · · + anXn]

= a1E[X1] + a2E[X2] + · · · + anE[Xn]

• Example:E[X ], X is binomial withn, p:

Xi =

{

1 ith flip is head
0 ith flip is tail

X =

n
∑

i=1

Xi , E[X ] =

n
∑

i=1

E[Xi] = np

• Assume there aren students in a class. What is the
expected number of months in which at least one stu-
dent was born. (Assume equal chance of being born
in any month).

Solution: LetX be the number of months some stu-
dents are born. LetXi be the indicator RV for the
ith month in which some students are born. Then
X =

∑12
i=1 Xi. Hence,

E(X) = 12E(X1) = 12P (X1 = 1) = 12 · [1− (
11

12
)n].
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Independent Random Variables

• X andY areindependent if

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b)

• Equivalently:F (a, b) = FX(a)FY (b).

• Discrete:p(x, y) = pX(x)pY (y).

• Continuous:f(x, y) = fX(x)fY (y).

• Proposition 2.3: IfX andY are independent, then for
functionh andg, E[g(X)h(Y )] = E[g(X)]E[h(Y )].
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Covariance

• Definition: Covariance of X andY

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

• Cov(X,X) = E[(X − E(X))2] = V ar(X).

• Cov(X,Y ) = E[XY ] − E[X ]E[Y ].

• If X andY are independent,Cov(X,Y ) = 0.

• Properties:

1. Cov(X, X) = V ar(X)

2. Cov(X, Y ) = Cov(Y,X)

3. Cov(cX, Y ) = cCov(X,Y )

4. Cov(X, Y + Z) = Cov(X,Y ) + Cov(X,Z)
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Sum of Random Variables

• If Xi’s are independent,i = 1, 2, ..., n

V ar(
n

∑

i=1

Xi) =
n

∑

i=1

V ar(Xi)

V ar(
n

∑

i=1

aiXi) =
n

∑

i=1

a2
iV ar(Xi)

• Example: Variance of Binomial RV, sum of indepen-
dent Bernoulli RVs.V ar(X) = np(1 − p).
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Moment Generating Functions

• Moment generating function of a RVX is φ(t)

φ(t) = E[etX ]

=

{ ∑

x:p(x)>0 etxp(x) X discrete
∫ ∞
−∞ etxf(x)dx X continuous

• Moment ofX: thenth moment ofX is E[Xn].

• E[Xn] = φ(n)(t) | t = 0, whereφ(n)(t) is thenth
order derivative.

• Example

1. Bernoulli with parameterp: φ(t) = pet + (1 − p),
for anyt.

2. Poisson with parameterλ: φ(t) = eλ(et−1), for any
t.

• Property 1: Moment generation function of the sum
of independent RVs:
Xi, i = 1, ..., n are independent,Z = X1 +X2 + · · ·+
Xn,

φZ(t) =
n

∏

i=1

φXi
(t)
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• Property 2: Moment generating function uniquely de-
termines the distribution.

• Example:

1. Sum of independent Binomial RVs

2. Sum of independent Poisson RVs

3. Joint distribution of the sample mean and sample
variance from a normal porpulation.
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Important Inequalities

• Markov Inequality: IfX is a RV that takes only non-
negative values, then for anya > 0

P (X ≥ a) ≤ E[X ]

a
.

• Chebyshev’s Inequality: IfX is a RV with meanµ
and varianceσ2, then for any valuek > 0

P{|X − µ| ≥ k} ≤ σ2

k2
.

• Examples: obtaining bounds on probabilities.
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Strong Law of Large Numbers

• Theorem 2.1 (Strong Law of Large Numbers): Let
X1, X2, ..., be a sequence of independent random
variables having a common distribution. LetE[Xi] =
µ. Then, with probability1

X1 + X2 + · · · + Xn

n
→ µ as n → ∞
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Central Limit Theorem

• Theorem 2.2 (Central Limit Theorem): LetX1, X2,
..., be a sequence of independent random variables
having a common distribution. LetE[Xi] = µ, V ar[Xi] =
σ2. Then the distribution of

X1 + X2 + · · · + Xn − nµ

σ
√

n

tends to the standard normal asn → ∞. That is

P{X1 + X2 + · · · + Xn − nµ

σ
√

n
≤ z}

→ 1√
2π

∫ z

−∞
e−x2/2dx = Φ(z)

• Example: estimate probability.

1. LetX be the number of times that a fair coin flipped
40 times lands heads. FindP (X = 20).

2. Suppose that orders at a restaurant are iid random
variables with meanµ = 8 dollars and standard
deviationσ = 2 dollars. Estimate the probability
that the first100 customers spend a total of more
than $840. Estimate the probability that the first
100 customers spend a total of between $780 and
$820.
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