Joint Distribution

- We may be interested in probability statements of several RVs.
- Example: Two people A and B both flip coin twice. X : number of heads obtained by A. Y : number of heads obtained by B. Find $P(X>Y)$.
- Discrete case:

Joint probability mass function: $p(x, y)=P(X=$ $x, Y=y)$.

- Two coins, one fair, the other two-headed. A randomly chooses one and B takes the other.

$$
X=\left\{\begin{array}{ll}
1 & \text { A gets head } \\
0 & \text { A gets tail }
\end{array} \quad Y= \begin{cases}1 & \text { B gets head } \\
0 & \text { B gets tail }\end{cases}\right.
$$

Find $P(X \geq Y)$.

- Marginal probability mass function of X can be obtained from the joint probability mass function, $p(x, y)$:

$$
p_{X}(x)=\sum_{y: p(x, y)>0} p(x, y)
$$

Similarly:

$$
p_{Y}(y)=\sum_{x: p(x, y)>0} p(x, y)
$$

- Continuous case:

Joint probability density function $f(x, y)$:

$$
P\{(X, Y) \in R\}=\iint_{R} f(x, y) d x d y
$$

- Marginal pdf:

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

- Joint cumulative probability distribution function of X and Y

$$
F(a, b)=P\{X \leq a, Y \leq b\} \quad-\infty<a, b<\infty
$$

- Marginal cdf:

$$
\begin{aligned}
F_{X}(a) & =F(a, \infty) \\
F_{Y}(b) & =F(\infty, b)
\end{aligned}
$$

- Expectation $E[g(X, Y)]$:

$$
\begin{array}{ll}
=\sum_{y} \sum_{x} g(x, y) p(x, y) & \text { in the discrete case } \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y & \text { in the continuous case }
\end{array}
$$

- Based on joint distribution, we can derive

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

Extension:

$$
\begin{aligned}
& E\left[a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right] \\
= & a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\cdots+a_{n} E\left[X_{n}\right]
\end{aligned}
$$

- Example: $E[X], X$ is binomial with n, p :

$$
\begin{gathered}
X_{i}= \begin{cases}1 & i \text { th flip is head } \\
0 & i \text { th flip is tail }\end{cases} \\
X=\sum_{i=1}^{n} X_{i}, E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]=n p
\end{gathered}
$$

- Assume there are n students in a class. What is the expected number of months in which at least one student was born. (Assume equal chance of being born in any month).
Solution: Let X be the number of months some students are born. Let X_{i} be the indicator RV for the i th month in which some students are born. Then $X=\sum_{i=1}^{12} X_{i}$. Hence,
$E(X)=12 E\left(X_{1}\right)=12 P\left(X_{1}=1\right)=12 \cdot\left[1-\left(\frac{11}{12}\right)^{n}\right]$.

Independent Random Variables

- X and Y are independent if

$$
P(X \leq a, Y \leq b)=P(X \leq a) P(Y \leq b)
$$

- Equivalently: $F(a, b)=F_{X}(a) F_{Y}(b)$.
- Discrete: $p(x, y)=p_{X}(x) p_{Y}(y)$.
- Continuous: $f(x, y)=f_{X}(x) f_{Y}(y)$.
- Proposition 2.3: If X and Y are independent, then for function h and $g, E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.

Covariance

- Definition: Covariance of X and Y

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]
$$

- $\operatorname{Cov}(X, X)=E\left[(X-E(X))^{2}\right]=\operatorname{Var}(X)$.
- $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- If X and Y are independent, $\operatorname{Cov}(X, Y)=0$.
- Properties:

1. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
2. $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
3. $\operatorname{Cov}(c X, Y)=c \operatorname{Cov}(X, Y)$
4. $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$

Sum of Random Variables

- If X_{i} 's are independent, $i=1,2, \ldots, n$

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

- Example: Variance of Binomial RV, sum of independent Bernoulli RVs. $\operatorname{Var}(X)=n p(1-p)$.

Moment Generating Functions

- Moment generating function of a RV X is $\phi(t)$

$$
\begin{aligned}
\phi(t) & =E\left[e^{t X}\right] \\
& = \begin{cases}\sum_{x: p(x)>0} e^{t x} p(x) & X \text { discrete } \\
\int_{-\infty}^{\infty} e^{t x} f(x) d x & X \text { continuous }\end{cases}
\end{aligned}
$$

- Moment of X : the nth moment of X is $E\left[X^{n}\right]$.
- $E\left[X^{n}\right]=\phi^{(n)}(t) \mid t=0$, where $\phi^{(n)}(t)$ is the nth order derivative.
- Example

1. Bernoulli with parameter $p: \phi(t)=p e^{t}+(1-p)$, for any t.
2. Poisson with parameter $\lambda: \phi(t)=e^{\lambda\left(e^{t}-1\right)}$, for any t.

- Property 1: Moment generation function of the sum of independent RVs:
$X_{i}, i=1, \ldots, n$ are independent, $Z=X_{1}+X_{2}+\cdots+$ X_{n},

$$
\phi_{Z}(t)=\prod_{i=1}^{n} \phi_{X_{i}}(t)
$$

- Property 2: Moment generating function uniquely determines the distribution.
- Example:

1. Sum of independent Binomial RVs
2. Sum of independent Poisson RVs
3. Joint distribution of the sample mean and sample variance from a normal porpulation.

Important Inequalities

- Markov Inequality: If X is a RV that takes only nonnegative values, then for any $a>0$

$$
P(X \geq a) \leq \frac{E[X]}{a} .
$$

- Chebyshev's Inequality: If X is a RV with mean μ and variance σ^{2}, then for any value $k>0$

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}} .
$$

- Examples: obtaining bounds on probabilities.

Strong Law of Large Numbers

- Theorem 2.1 (Strong Law of Large Numbers): Let X_{1}, X_{2}, \ldots, be a sequence of independent random variables having a common distribution. Let $E\left[X_{i}\right]=$ μ. Then, with probability 1

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \rightarrow \mu \text { as } n \rightarrow \infty
$$

Central Limit Theorem

- Theorem 2.2 (Central Limit Theorem): Let X_{1}, X_{2}, ..., be a sequence of independent random variables having a common distribution. Let $E\left[X_{i}\right]=\mu, \operatorname{Var}\left[X_{i}\right]=$ σ^{2}. Then the distribution of

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

tends to the standard normal as $n \rightarrow \infty$. That is

$$
\begin{array}{r}
P\left\{\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq z\right\} \\
\rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-x^{2} / 2} d x=\Phi(z)
\end{array}
$$

- Example: estimate probability.

1. Let X be the number of times that a fair coin flipped 40 times lands heads. Find $P(X=20)$.
2. Suppose that orders at a restaurant are iid random variables with mean $\mu=8$ dollars and standard deviation $\sigma=2$ dollars. Estimate the probability that the first 100 customers spend a total of more than $\$ 840$. Estimate the probability that the first 100 customers spend a total of between $\$ 780$ and $\$ 820$.
